- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Beers, Timothy C (1)
-
Conover, Justin L (1)
-
Das, Payel (1)
-
Ge, Xiao-Yang (1)
-
Huang, Yang (1)
-
Jia, Kai-Hua (1)
-
Jin, Chong-Yang (1)
-
Li, Da-Wei (1)
-
Li, Meng-Meng (1)
-
Liu, De-Tuan (1)
-
Liu, Xiong-Fang (1)
-
Liu, Yi-Hui (1)
-
Lysak, Martin A (1)
-
Ma, Yong-Peng (1)
-
Shang, Hong-Yun (1)
-
Shao, Shi (1)
-
Shao, Shi-Cheng (1)
-
Shen, Xiao-Yi (1)
-
Wang, Chun (1)
-
Wendel, Jonathan F (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present maps of the mean metallicity distributions on the GalactocentricR–Zplane at different azimuthal angles using red clump stars selected from the LAMOST and APOGEE surveys. In the inner disk (R < 11 kpc), the metallicity distribution is symmetric between the upper and lower disk. However, we find a north–south metallicity asymmetry in the outer disk (R > 11 kpc), especially toward the anti-Galactic center (−5∘ < Φ < 15°) direction. By further dissecting the map in age space, we detect this asymmetry across all mono-age stellar populations. However, the asymmetry is less pronounced in older populations (τ > 8 Gyr) compared to younger ones (τ < 6 Gyr). This reduced significance likely stems from three factors: larger age uncertainties, fewer stars in the outer disk, and the kinematically hotter nature of older populations. The observed metallicity asymmetry may be the consequence of the perturbation of the recent pericentric passage through the Galactic disk and tidal force of the well-known Sagittarius dwarf galaxy.more » « lessFree, publicly-accessible full text available July 31, 2026
-
Zhang, Ren-Gang; Zhao, Hang; Conover, Justin L; Shang, Hong-Yun; Liu, De-Tuan; Zhou, Min-Jie; Liu, Xiong-Fang; Jia, Kai-Hua; Shao, Shi-Cheng; Li, Meng-Meng; et al (, Nature Communications)Polyploidy and subsequent post-polyploid diploidization (PPD) are key drivers of plant genome evolution, yet their contributions to evolutionary success remain debated. Here, we analyze the Malvaceae family as an exemplary system for elucidating the evolutionary role of polyploidy and PPD in angiosperms, leveraging 11 high-quality chromosome-scale genomes from all nine subfamilies, including newly sequenced, near telomere-to-telomere assemblies from four of these subfamilies. Our findings reveal a complex reticulate paleoallopolyploidy history early in the diversification of the Malvadendrina clade, characterized by multiple rounds of species radiation punctuated by ancient allotetraploidization (Mal-β) and allodecaploidization (Mal-α) events around the Cretaceous–Paleogene (K–Pg) boundary. We further reconstruct the evolutionary dynamics of PPD and find a strong correlation between dysploidy rate and taxonomic richness of the paleopolyploid subfamilies (R^2 ≥ 0.90, P < 1e-4), supporting the “polyploidy for survival and PPD for success” hypothesis. Overall, our study provides a comprehensive reconstruction of the evolutionary history of the Malvaceae and underscores the crucial role of polyploidy–dysploidy waves in shaping plant biodiversity.more » « lessFree, publicly-accessible full text available August 12, 2026
An official website of the United States government
